Modeling the selectivity of activated carbons for efficient separation of hydrogen and carbon dioxide
نویسندگان
چکیده
Grand canonical Monte Carlo simulations (GCMC) are carried out to investigate the separation of hydrogen and carbon dioxide via adsorption in activated carbons. In the simulations, both hydrogen and carbon dioxide molecules are modeled as Lennard-Jones spheres, and the activated carbons are represented by a slit-pore model. At elevated temperatures (T = 505 and 923 K), the activated carbons exhibit essentially no preference over the two gases and the selectivity of carbon dioxide relative to hydrogen falls monotonically as the pore size increases. At room temperature, however, the selectivity of carbon dioxide relative to hydrogen reaches up to 90, indicating that hydrogen and carbon dioxide can be efficiently separated. Furthermore, the optimized pore sizes, of width H = 1.48 nm for the bulk mole fraction ratio of xCO2=xH2 1⁄4 1 : 2 and H = 1.18 nm for xCO2=xH2 1⁄4 1 : 8, are identified in which the activated carbons show the highest selectivity for the separation of hydrogen and carbon dioxide. 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
Investigation of carbon dioxide capture from hydrogen using the thermal pressure swing adsorption process: Central composite design modeling
In this study pre-combustion capture of carbon dioxide from hydrogen was performed using a 5A zeolite adsorber. A one column thermal pressure swing adsorption (TPSA) process was studied in the bulk separation of a CO2/H2 mixture (50:50 vol%). The adsorption dynamics of the zeolite bed were investigated by breakthrough experiments to select the suitable range for operational factors in the desig...
متن کاملPreparation of Carbon Molecular Sieves from Pistachio Shell and Walnut Shell for Kinetic Separation of Carbon Monoxide, Hydrogen, and Methane
In this study, two Carbon Molecular Sieves using Pistachio shell (CMS P) and Walnut shell (CMS W) were prepared by a chemical vapor deposition method and used for pressure swing adsorption and separation of CO/H2 and CO/CH4. Adsorption isotherms of gases obtained for both CMS’s. The Dubinin-Radushkevich isotherm model was used for comparing pore volum...
متن کاملModeling of Activated Carbon Preparation from Spanish Anthracite Based on ANFIS Structure
Carbon nanostructures are famous structures which are used in several industries such as separation, treatment, energy storage (i.e. methane and hydrogen storage), etc. A successful modeling of activated carbon preparation is very important in saving time and money. There are some attempts to achieve the appropriate theoretical modeling of activated carbon preparation but most of them were almo...
متن کاملAdsorption of nitrate from aqueous solution using activated carbon-supported Fe0, Fe2 (SO4)3, and FeSO4
In this laboratory scale study, impregnated almond shell activated carbon was used as adsorbent to investigate its feasibility for nitrate adsorption from aqueous medium. The effects of activated carbon dosage and contact time have been examined in batch experiments. Experimental data show that impregnated activated carbons by Fe0, Fe2 (SO4)3, and FeSO4 were more effective than virgin almond ac...
متن کاملPreparation, characterization and phenol adsorption capacity of activated carbons from African beech wood sawdust
In the present study, different activated carbons were prepared from carbonized African beech wood sawdust by potassium hydroxide activation. The activated carbons were characterized by brunauer–emmett–teller, scanning electron microscope, fourier transform infrared spectroscopy, and thermogravimetric analyzer. The phenol adsorption capacity of the prepared carbons was evaluated. The d...
متن کامل